Rotating dotted ellipses: Motion perception driven by grouped figural rather than local dot motion signals

نویسندگان

  • G. P. Caplovitz
  • P. U. Tse
چکیده

UNLABELLED Unlike the motion of a continuous contour, the motion of a single dot is unambiguous and immune to the aperture problem. Here we exploit this fact to explore the conditions under which unambiguous local motion signals are used to drive global percepts of an ellipse undergoing rotation. In previous work, we have shown that a thin, high aspect ratio ellipse will appear to rotate faster than a lower aspect ratio ellipse even when the two in fact rotate at the same angular velocity [Caplovitz, G. P., Hsieh, P. -J., & Tse, P. U. (2006) Mechanisms underlying the perceived angular velocity of a rigidly rotating object. Vision Research, 46(18), 2877-2893]. In this study we examined the perceived speed of rotation of ellipses defined by a virtual contour made up of evenly spaced dots. RESULTS Ellipses defined by closely spaced dots exhibit the speed illusion observed with continuous contours. That is, thin dotted ellipses appear to rotate faster than fat dotted ellipses when both rotate at the same angular velocity. This illusion is not observed if the dots defining the ellipse are spaced too widely apart. A control experiment ruled out low spatial frequency "blurring" as the source of the illusory percept. CONCLUSION Even in the presence of local motion signals that are immune to the aperture problem, the global percept of an ellipse undergoing rotation can be driven by potentially ambiguous motion signals arising from the non-local form of the grouped ellipse itself. Here motion perception is driven by emergent motion signals such as those of virtual contours constructed by grouping procedures. Neither these contours nor their emergent motion signals are present in the image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The whole moves less than the spin of its parts.

When individually moving elements in the visual scene are perceptually grouped together into a coherently moving object, they can appear to slow down. In the present article, we show that the perceived speed of a particular global-motion percept is not dictated completely by the speed of the local moving elements. We investigated a stimulus that leads to bistable percepts, in which local and gl...

متن کامل

Rotating columns: relating structure-from-motion, accretion/deletion, and figure/ground.

We present a novel phenomenon involving an interaction between accretion deletion, figure-ground interpretation, and structure-from-motion. Our displays contain alternating light and dark vertical regions in which random-dot textures moved horizontally at constant speed but in opposite directions in alternating regions. This motion is consistent with all the light regions in front, with the dar...

متن کامل

Illusory movement of dotted lines.

When oblique rows of black and white dots drifted horizontally across a mid-grey surround, the perceived direction of motion was shifted to be almost parallel to the dotted lines and was often nearly orthogonal to the real motion. The reason is that the black/white contrast signals between adjacent dots along the length of the line are stronger than black/grey or white/grey contrast signals acr...

متن کامل

Integration of structure-from-motion and symmetry during surface perception.

Sinusoidal motion of elements in a random-dot pattern can elicit a striking percept of a rotating volume, a phenomenon known as structure-from-motion (SFM). We demonstrate that if the dots defining the volume are 2D mirror-symmetric, novel 3D interpretations arise. In addition to the classical rotating cylinder, one can perceive mirror-symmetric, flexible surfaces bending along the path of move...

متن کامل

Local and global segmentation of rotating shapes viewed through multiple slits.

Rotating outline squares and circles were viewed through a sunburst pattern of stationary radial slits. At slow rotation rates the (dotted) square was perceived globally as a single rotating shape, and at higher rates, as a set of independent local dots moving in and out radially. An eccentrically rotating circle was seen as a dotted circle; the dots comprising the circle actually moved in and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2007